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Abstract

We address the problem of estimating the relative pose,
i.e. translation and rotation, of two calibrated cameras from
image point correspondences. Our approach is to factor the
nonlinear algebraic pose error functional into translational
and rotational components, and to optimize translation and
rotation independently. This factorization admits subprob-
lems that can be solved using direct methods with practi-
cal guarantees on global optimality. That is, for a given
translation, the corresponding optimal rotation can directly
be determined, and vice versa. We show that these sub-
problems are equivalent to computing the least eigenvector
of second- and fourth-order symmetric tensors. When nei-
ther translation or rotation is known, alternating transla-
tion and rotation optimization leads to a simple, efficient,
and robust algorithm for pose estimation that improves on
the well-known 5- and 8-point methods.

1. Introduction
The problem of estimating the relative pose between two

calibrated cameras has received considerable attention in
the computer vision literature over the past several decades.
This problem can be formulated as follows: Given two cam-
eras with known intrinsic parameters and a set of point cor-
respondences between matching pixels in the images cap-
tured by the cameras, determine the extrinsic parameters of
the cameras, that is, their relative positions and orientations.
As the point correspondences are often perturbed by noise,
e.g. due to numerical or measurement errors, the pose es-
timation problem usually becomes one of determining the
extrinsic parameters that best explain the observed points,
as measured by an error functional dependent on the pose
parameters.

In this paper we consider the minimization of what has
become known as the algebraic error [5], as is also the goal
of a number of prior methods [4, 5, 7, 14]. Though more
elaborate functionals exist [6], a pose that minimizes alge-
braic error is usually a good approximation that may be used
Prepared by LLNL under Contract DE-AC52-07NA27344.

to seed secondary nonlinear optimization, and hence devel-
oping efficient approaches to algebraic error minimization
has merit. The algebraic error can be written mathemati-
cally as follows. Let x = [x1 x2 1]T and x′ = [x′1 x′2 1]T

be corresponding points on the image plane in the respec-
tive coordinate frames of the two cameras. These points are
related by the epipolar geometry constraint [11]

xTEx′ = 0, (1)

where
E = [t]×R (2)

is a 3×3 rank-2 matrix called the essential matrix. Here t is
a unit vector that represents the relative position, or transla-
tion, between the two cameras, and R is an orthogonal rota-
tion matrix that represents relative camera orientation, both
expressed in the coordinate frame of point x. Note that ab-
sent additional constraints the translation can be determined
only up to scale, and as is common we choose ‖t‖ = 1. The
skew-symmetric matrix [t]× is defined as

[t]× =

 0
t3
−t2

−t3
0
t1

t2
−t1
0

 , (3)

such that [t]×x = t×x for any x. In practice, Equation 1 is
seldom satisfied exactly due to noise in x and x′, and conse-
quently we define the algebraic error functional f(R, t) as
a sum of square residuals

f(R, t) = f(E) =
∑

i

(xT
i Ex′i)

2 (4)

over all point pairs 〈xi, x
′
i〉. Minimizing f amounts to de-

termining the nine elements of E. Because t is a unit-norm
3-vector, and since any rotation R can be expressed by as
few as three parameters, E has only five degrees of free-
dom and its elements are related by a set of nonlinear con-
straints [13]. As a result of this, minimizing f is a nontrivial
optimization problem.

Prior approaches to minimizing f can roughly be di-
vided into two camps: direct [4, 10, 13–15, 21] and non-
linear methods [7, 12, 22]. Methods in the latter camp, such
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as sparse bundle adjustment, employ standard nonlinear it-
erative techniques [16, 17], possibly by using first and even
second derivative information on f , and are subject to the
usual pitfalls of high-dimensional nonlinear optimization,
such as getting trapped in a local minimum. Direct meth-
ods [4, 14, 15], on the other hand, use linear algebra tech-
niques such as SVD to obtain an approximate solution that
typically violates the rank-2 constraint on E. A subsequent
“projection” step is thus needed that in general leads to
a suboptimal solution. The five-point method [10, 13, 21]
avoids projection by explicitly incorporating the essential
constraints, but restricts the optimization to a 4D subspace
that, in the overconstrained case of more than five points,
generally does not contain the global optimum.

In this paper we factor the optimization problem into
separate eigenvalue subproblems that can be solved by sim-
ple (multi-)linear algebra techniques. For a fixed orienta-
tion R, this decomposition allows the optimal translation
t∗ = argmint f(R, t) for R to be computed; a known re-
sult due to Spetsakis and Aloimonos [20]. Our main con-
tribution is to develop a solution to the reverse problem:
for a fixed translation t, determine the optimal orientation
R∗ = argminR f(R, t). Our solution is of practical value
in applications in which the relative camera positions are
known, as incorporating such constraints allows determin-
ing a more accurate pose. We demonstrate the improved
accuracy of our technique over Hartley’s direct method [5]
for known epipoles, as well as the unconstrained 5- and 8-
point methods. A secondary contribution of this paper is
a new iterative pose estimator that combines our globally
optimal techniques to optimize translation and orientation
alternately in 2D and 3D subspaces of 5D pose space. This
method is stable and robust, requires neither derivatives nor
heuristic step sizes, and provably reduces the algebraic error
monotonically in each step. We show that using reasonable
initial estimates, e.g. from existing direct methods, this pro-
cess in practice converges quickly to a global minimum.

2. Preliminaries
Before describing our approach, we introduce some no-

tation. Vectors and points are denoted by lowercase letters,
e.g. x, matrices by uppercase, e.g. A, and higher-order ten-
sors by caligraphic letters, e.g. A. aij denotes the element
in the ith row, jth column of matrix A, and tensor elements
appear as Greek symbols, e.g. αijkl.

We write the Kronecker product of an m × n matrix A
and a p× q matrix B as:

A⊗B =

a11B
...

am1B

· · ·
. . .
· · ·

a1nB
...

amnB

 . (5)

The vectorization operator stacks the columns of an m× n

matrix to form a vector of length mn, e.g.

vec
[
a11

a21

a12

a22

]
= [a11 a21 a12 a22]

T
. (6)

This operator satisfies the following identities:

vec(ABC) = (CT ⊗A) vec(B)

vec(AB) = (I ⊗A) vec(B) = (BT ⊗ I) vec(A)

tr(ATB) = vec(A)T vec(B),

(7)

where I denotes the identity matrix. We will use unvec
to denote the inverse of vec. For a full treatment of these
operators, we refer the interested reader to [23].

3. Translation optimization
Let us first consider the problem of determining the

translation t∗ that minimizes f for a given rotation R, i.e.,

t∗(R) = argmin
‖t‖=1

f(R, t) (8)

We begin by rearranging f(R, t) = f(E) as follows:

f(E) =
∑

i

(xT
i Ex′i)

2 =
∑

i

tr(x′i
T
ETxix

T
i Ex′i)

=
∑

i

tr(x′ix
′
i
T
ETxix

T
i E)

=
∑

i

vec(xix
T
i Ex′ix

′
i
T)T vec(E)

=
∑

i

(
(x′ix

′
i
T ⊗ xix

T
i ) vec(E)

)T vec(E)

= vec(E)T
(∑

i

x′ix
′
i
T ⊗ xix

T
i

)
vec(E)

= vec(E)TX vec(E),

(9)

where we have made use of the identities in Equation 7
and the fact that the trace of a matrix product is invariant
under cyclic permutations. Here X is a 9 × 9 symmet-
ric positive semi-definite coefficient matrix that captures all
of the point correspondences 〈xi, x

′
i〉, and allows evaluat-

ing f in constant time regardless of the number of points.
Clearly the minimum of f(E) is attained by letting vec(E)
be the eigenvector corresponding to the smallest eigenvalue
of X—this is the basis for the eight-point algorithm [4].
Such an eigenvector, however, cannot in general be decom-
posed in the form of Equation 2. Instead, we will explicitly
decompose E into a valid translation and rotation.

Combining Equation 2 and Equation 7, we have

vec(E) = (RT ⊗ I) vec([t]×) = (RT ⊗ I)Vtt, (10)

where Vt is given in Table 1. Plugging this back into Equa-
tion 9, we obtain

f(R, t) = tTV T
t (R⊗ I)X(RT ⊗ I)Vtt = tTA(R)t. (11)
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Vt =

2
666666666664

0 0 0
0 0 1
0 −1 0
0 0 −1
0 0 0
1 0 0
0 1 0

−1 0 0
0 0 0

3
777777777775

VR =

2
666666666664

1 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 −1
0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
0 0 −1 0 0 0 0 1 −1 0 0 0 0 1 0 0
0 0 0 −1 0 0 1 0 0 1 0 0 −1 0 0 0
1 0 0 0 0 −1 0 0 0 0 1 0 0 0 0 −1
0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
0 −1 0 0 −1 0 0 0 0 0 0 1 0 0 1 0
1 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 1

3
777777777775

Table 1. Vectorization matrices Vt and VR.

We see that A(R) is a symmetric positive semi-definite 3×3
matrix that depends only on R (i.e. not on t), and hence the
minimum of f is given by the smallest eigenvalue of A(R).
The optimal translation t∗ is therefore the corresponding
(unit) eigenvector. Our implementation uses a small num-
ber of Jacobi rotations to find the full eigendecomposition
of A(R), though other standard techniques such as inverse
iteration could also be used [3]. Note that t∗ is determined
only up to sign as both ±t∗ are eigenvectors. To find the
correct translation, a simple cheirality test is used [6, 13].

Although quite simple, the above factorization of f ap-
pears to have received relatively little attention in the vision
community, and we are aware of only one prior use of this
formula. Spetsakis and Aloimonos [20] use the above re-
sult to design a Newton-like iteration scheme for the outer
optimization problem of determining the rotation R. In the
following section we show how a generalization of the ap-
proach here can be used to also formulate the optimal rota-
tion as an eigenvalue problem.

4. Rotation optimization
We have seen above that one can factor the al-

gebraic error minimization into two nested problems:
minR mint f(R, t). It is natural to ask if swapping the
inner and outer problems leads to a similar formulation,
i.e. given some translation t, can one efficiently compute
R∗(t) = argminR f(R, t)? The answer is yes, and the
problem again reduces to an eigenvalue problem, although
involving higher-order tensors.

We begin by applying the second identity of Equation 7
in the vectorization of E:

vec(E) = vec([t]×R) = (I ⊗ [t]×) vec(R). (12)

Unlike vec([t]×), vec(R) cannot be written as a linear ex-
pression of independent parameters, i.e. R has only three
degrees of freedom but nine interdependent elements. We
will address this problem in part by using a quaternion pa-
rameterization of R. Let q = [w x y z]T be a unit quater-
nion corresponding to R, such that

R =
[

w2 + x2 − y2 − z2

2xy + 2wz
2xz − 2wy

2xy − 2wz
w2 − x2 + y2 − z2

2wx + 2yz

2wy + 2xz
2yz − 2wx

w2 − x2 − y2 + z2

]
.

(13)

Note that each element of R is a homogeneous quadratic
polynomial in q. Hence we can write vec(R) as

vec(R) = VR(q ⊗ q), (14)

where VR is the 9 × 16 constant matrix given in Table 1.
This leads to the functional

f(q, t) = (q ⊗ q)TV T
R (I ⊗ [t]T×)X(I ⊗ [t]×)VR(q ⊗ q)

= (q ⊗ q)TA(t)(q ⊗ q),
(15)

where A(t) is a 16 × 16 real, symmetric positive semi-
definite matrix of rank at most six. We may rewrite Equa-
tion 15 in tensor form as

f(q, t) = A(t)q
4 =

∑
i

∑
j

∑
k

∑
l

αijklqiqjqkql, (16)

where A(t) is a fourth-order, four-dimensional tensor, and
where the elements of A(t) and A(t) are related by

αijkl = a4(i−1)+j,4(k−1)+l. (17)

f(q, t) is a quartic homogeneous polynomial, which in gen-
eral has nontrivial minima. However, we will exploit the
particular structure of this problem to arrive at a simple so-
lution.

A tensor A(t) is said to be symmetric1 if αijkl is invari-
ant under all permutations of the indices ijkl. Symmetry for
tensors has the same implications on existence of real eigen-
values as it does for matrices. In general A(t) is not sym-
metric, but we can compute a symmetric tensor Ā(t) by re-
placing each αijkl inA(t) with 1

4! (αijkl+αijlk+· · ·+αlkji)
(see also [2,18]). This operation does not affect the function
value, i.e. f(q, t) = A(t)q

4 = Ā(t)q
4 for all q. (This is anal-

ogous to the identity xTAx = 1
2xT(A+AT)x for matrices.)

Thus, w.l.o.g., we will assume from here on that all tensors
are symmetric or can be symmetrized. We note that this
symmetrization generally makes the unfolded matrix A(t)

indefinite on R16 (i.e. A(t) may have negative eigenvalues),
but of course A(t) is still positive semi-definite on the space
of Kronecker squares q ⊗ q.

1Also called ‘supersymmetric’ by some authors (c.f . [8, 18]).
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The quartic optimization problem

min
‖q‖=1

f(q, t) = A(t)q
4 (18)

is a fourth-order eigenvalue problem that has been studied
recently by Qi and others; see [19] and references therein.
For real symmetric tensors of even order it is known that
the minimum is given by the smallest Z-eigenvalue λmin ,
and that such eigenvalues and corresponding eigenvectors
exist [18]. In fact, the stationary points of f(q, t) for fixed t
are exactly the set of Z-eigenvectors of A(t). In spite of the
similarities with the second-order case (i.e. symmetric ma-
trices), higher-order tensors do not share all the nice prop-
erties of matrix eigendecompositions. For example, the Z-
eigenvectors of higher-order tensors are not necessarily or-
thogonal; there is no known computable canonical represen-
tation analogous to diagonalization that reveals the eigen-
values; and the number of eigenvalues for an mth -order, n-
dimensional tensor may be as many as n(m − 1)n−1 (in
our case, m = n = 4), and may thus exceed n when
n, m ≥ 3 [18]. (In practice, we have found the number
of eigenvalues to be in the range 12–24.) Nevertheless, it
is possible to compute λmin and the minimizer q∗ with ex-
tremely high likelihood using the following procedure.

4.1. Higher-order eigenvector computation

We seek to find a q such thatA(t)q
3 = λq. As in the case

of matrix eigendecompositions, the application q ← A(t)q
3

tends to steer q in the direction of the eigenvector of A(t)

with largest eigenvalue, which is the basis for the power
method [3] and its generalization (HOPM) to higher-order
tensors [9]. We are interested, however, in the eigenvec-
tor corresponding to the smallest eigenvalue, which can be
computed using HOPM by constructing an auxiliary tensor
ρI −A(t), whose eigenvectors coincide with those of A(t),
but which in effect has the order of eigenvalues reversed.
That is, (ρI−A(t))q3 = ρq−A(t)q

3 = (ρ−λ)q. Here ρ is
a bound on the largest eigenvalue of A(t), which is trivially
obtained as the largest eigenvalue of the matrix A(t). The
tensor I corresponds to the matrix unfolding I4⊗ I4 = I16,
with elements related by Equation 17 (see also [2]).

Finally, although HOPM is guaranteed to converge [8],
fast convergence requires a good initial guess for the eigen-
vector sought. Kofidis and Regalia [8] propose a solution to
a similar problem by considering the eigendecompositions
of the 4 × 4 matrices Ui formed by folding the eigenvec-
tors ui of A(t), i.e. Ui = unvec(ui). With some abuse of
language, we will refer to these matrices Ui as the “eigen-
matrices” of A(t). Kofidis and Regalia show that ten of the
Ui are symmetric; the remaining six are skew symmetric
and lie in the null space of A(t) (and are thus not of interest
to us). Furthermore, the structure of our problem is such
that four of the ten symmetric eigenmatrices are orthogonal
(modulo scale), and three of these have zero trace.

1. Compute A(t), A(t) from t (Equation 15)
2. A(t) = Ā(t); A(t) = Ā(t) symmetrize
3. U diag(µ1, . . . , µ16)UT = A(t) eigendecomp.
4. ρ = µ1 upper bound on λ1(A(t))
5. U16 = unvec(u16) fold least eigenvector
6. V diag(ν1, . . . , ν4)V T = U16 eigendecomp.
7. for i = 1, 2 use two seed points
8. q0 = vi initialize with eigenvector of V
9. for k = 1, 2, . . . power iteration loop

10. qk = ρqk−1 −A(t)q
3
k−1

11. qk = qk/‖qk‖
12. f = A(t)q

4

13. if f < f∗ then keep best solution
14. f∗ = f
15. q∗ = q

Table 2. Algorithm for computing the optimal unit quaternion
q∗(t) = argminq f(q, t) for a given translation t.

Kofidis and Regalia choose as initial guess for the maxi-
mizer of f the dominant eigenvector of the dominant eigen-
matrix U1 of A(t). The analogous solution to our problem is
to choose the dominant eigenvector of U16; the matrix cor-
responding to the smallest eigenvalue µ16 of A(t) (again,
µ16 is generally negative). Each of the nine symmetric
traceless 4×4 matrices Ui, and in particular U16, has eigen-
values of the form −νmax ≤ −νmin ≤ 0 ≤ νmin ≤ νmax .
Each pair 〈ν,−ν〉 corresponds to the two orientations in a
“twisted pair” configuration (i.e. an orientation q and its
180-degree rotation around the translation t; c.f . [6, 13]),
and result in the same algebraic error. Thus we may arbitrar-
ily choose as initial estimate the eigenvector corresponding
to the positive eigenvalue νmax .

This approach to initializing the power method nearly al-
ways works well, but occasionally fails in neighborhoods of
t in which the order of the smallest two (or more) eigen-
values of A(t) changes—i.e. where the global minimum
q∗ = argminq f(q, t) jumps between distant minima lo-
cated in different basins when t is perturbed—as then the
power method converges slowly, and possibly even to the
wrong minimum (see Figure 1 and Figure 2). To work
around this, we seed the power method also with the eigen-
vector corresponding to νmin , since in this situation this
vector must be nearly orthogonal to the suboptimal solu-
tion and hence closer to the true global optimum. We then
choose as solution the best of the two eigenvectors found
(if different). Table 2 lists the resulting algorithm, which
makes use of S-HOPM, the more efficient and concise spe-
cialization of HOPM for symmetric tensors. In spite of the
non-convexity of f that in theory could cause S-HOPM to
fail [8, 9], we have found S-HOPM and HOPM to yield
identical, globally optimal results (as verified exhaustively)
in the several millions of cases we have tested.
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Figure 1. Tensor eigenvalues λi(t), i.e. stationary values of
f(R, t), for the data in Figure 3 over a 1D slice of the transla-
tion domain (multiple eigenvalues have been consolidated). The
minimal algebraic error minR f(R, t) is the lower envelope of the
functions λi(t) (shaded area). To ensure convergence to the small-
est eigenvalue near the “cusp,” where the smallest two eigenval-
ues cross, the power method is seeded with two different starting
points. (Note: The complete set of eigenvalues, shown here for
illustrative purposes, was computed by exhaustive sampling and
local descent, a procedure impractical for global optimization.)

5. Unconstrained pose estimation

The two methods we have outlined above for determin-
ing camera extrinsics may be used in isolation in those situ-
ations where either the relative camera positions or orienta-
tions are known, or for which good estimates are available.
When neither parameters are known, some bootstrapping
mechanism is needed, as is also the case for most nonlinear
pose estimators. To this end the normalized 8-point [4] and
the 5-point method [10, 13, 21] are popular choices. Unfor-
tunately, as is known and demonstrated below, for noisy cor-
respondences or small baseline-to-scene-depth ratios, these
methods may provide arbitrarily poor pose estimates.

When direct methods fail one has little recourse but to
fall back on schemes like RANSAC to attempt to exclude
outliers (in case of noisy data), or on sampling of the ob-
jective function (whenever noise is not the cause of failure)
to identify an approximate initial pose. Due to the curse
of dimensionality, uniformly sampling 5D pose space in
as coarse as 15-degree increments requires on the order of
one million evaluations of the algebraic error (Equation 9),
which may be prohibitive in some applications. This sug-
gest another utility of our method, which in effect reduces
the 5D space to 2D: rather than spending O(n3) samples
on orientation, our method finds for each sample translation
the globally best orientation directly in O(1) time. The dra-
matic reduction in the size of the search space more than
offsets the higher cost of optimization versus blind sam-
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Figure 2. Convergence of the higher-order power method from
two different initial estimates (c.f . Table 2). In this case, the i = 2
case converges to the same local minimum as differential evolu-
tion (DE), whereas i = 1 approaches the global minimum after
roughly 128 iterations. Note that each power iteration is consider-
ably cheaper to execute than one iteration of DE.

pling. In this sense, our method is a good complement to
direct methods when those fail, and may seed further non-
linear optimization.

The idea of decomposing the 5D pose estimation prob-
lem into lower 2D or 3D subproblems is not new—only
our approach to orientation optimization is. The direct so-
lution to translation coupled with an outer nonlinear op-
timization of orientation, as proposed by Spetsakis and
Aloimonos [20], and the converse direct (but suboptimal)
method for estimating orientation from known epipoles by
Hartley [5] are two examples. Both of these methods take ad
hoc approaches to the outer optimization problem, however.
Equipped with optimal solvers for both problems, we may
instead alternate translation and orientation optimization,
using the solution of one as input into the alternate opti-
mizer, and taking arbitrarily large strides in pose space, pos-
sibly across “hill tops” in the objective function. Although
each such step guarantees global optimality within a 2D or
3D subspace (a slice of pose space) and that the algebraic er-
ror is reduced, there are no guarantees that a global optimum
over the full 5D pose space is attained. Nevertheless, using
globally optimal subspace methods instead of local descent
via gradient- or sampling-based methods is arguably a more
reliable strategy. In practice, one would employ just a hand-
ful of iterations (we use 16 iterations as a limit) of alternate
optimization over orthogonal subspaces to arrive at the cor-
rect basin containing the global optimum, from which one
would then proceed to make strides in all five dimensions to
avoid the need to “zig-zag” down a 5D valley (c.f . steepest
descent versus conjugate gradients [16]).
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6. Results
We now evaluate our method and compare it both with a

nonlinear optimizer and with direct methods on imperfect,
overconstrained inputs (> 8 points). Although each method
evaluated may benefit from RANSAC, we chose not to em-
ploy it here in order to eliminate the influences of random
chance and RANSAC parameter tweaking, and instead de-
fer such a study to future work. In our evaluation we use
one data set comprised of over one million points output by
a dense correspondence code (Figure 3), as well as a col-
lection of 100 point clouds of 100 random points each. The
3D points are distributed uniformly with a unit radial stan-
dard deviation, and are parameterized by their mean depth δ
and standard deviation σ pixels of the Gaussian distributed
random noise applied to their image projections. The cam-
eras are for each data set positioned and oriented randomly,
with a unit baseline and up to a 70 degree difference in ori-
entation. All 3D points are visible to both cameras within
90-degree fields of view and 10242-pixel images.

We begin by examining how well orientation is opti-
mized on the data in Figure 3. To gain some intuition for
how our method performs, we plot in Figure 4 for each of
10252 unit translations (stereographically projected onto the
unit square) the algebraic error for the best orientation found
by three methods, including ours. Differential evolution
(DE) [17]—a general-purpose sampling-based method—is
used as a representative of global nonlinear optimizers, with
a population size of 32 and up to 128 generations, i.e. as
many as 4,096 rotation samples. Although more samples
or multiple restarts could have been used, with these set-
tings DE is already several times slower than our method.
We also compare with Hartley’s SVD method for known
epipoles [5, Section 3(b)], slightly modified to compute es-
sential rather than fundamental matrices.

Figure 4 shows that our method and DE produce the
same globally optimal values minR f(R, t) for most t, but
in about 11% of cases DE gets stuck in a local minimum
high above the global one, resulting in tall thin spikes
snugly surrounded by tiny contours that appear as black
dots. Meanwhile Hartley’s method results in a vastly differ-
ent, everywhere suboptimal landscape, and produces mean-
ingful results only in the immediate vicinity of the globally
optimal translation at the center. The difference in mag-
nitude between local and global minima can better be ap-
preciated in Figure 4(d). The intent of these plots is not
to suggest that translation space be sampled uniformly as
a basis for pose estimation, but simply to show that only
our method reliably computes the optimal R regardless of
t, which is important in alternating optimization when esti-
mates of R and t are incrementally refined. We also point
out that the failure rate of DE in 3D is likely to be amplified
if run unconstrained in 5D pose space due to the combina-
torial increase in local minima and samples needed.

Figure 3. Image pair and 1.24 million approximate point matches.

Figure 5 shows similar plots for one of the synthetic data
sets. In (a) we also show how t changes between iterations
of alternate optimization. Since this method monotonically
reduces the error, it should not be surprising that the tra-
jectories approximate the steepest descent lines of the 2D
function minR f(R, t). Note also the ridgeline separating
two distinct basins of attraction. Although the alternating
approach may take long strides, possibly even across this
ridge, it does so rarely in practice.

Oftentimes the relative camera positions are known to
high accuracy, in which case it is desirable to constrain
the optimization to orientations only. Figure 6 shows for
the synthetic data orientation errors, measured as the an-
gle of rotation separating two orientations, for our method,
Hartley’s, and the normalized 8-point [4] and 5-point [21]
methods, which both ignore the translation constraint. We
used Stewénius’ Matlab implementation of the 5-point
method [21], which benefited from our selection of the best
orientation among the several hypotheses it generates. This
figure indicates that our method consistently achieves lower
error, sometimes by a wide margin (note the logarithmic
scale). As observed by others [1], the 5-point method is of-
ten outperformed in the overconstrained case (> 5 points).

Figure 7 plots for unconstrained pose estimation the al-
gebraic error ratio with respect to our alternating method,
which was seeded with the pose found by the 8-point
method. As expected, our rotation optimizer does worse
than our unconstrained method on this measure, but only
slightly so. Overall our alternating method performs best
(unit error), except in (c). We here found that the com-
bination of few points and relatively high noise and scene
depth resulted in error functionals that favored “degenerate”
poses discovered only by the 5-point method. Though low
in algebraic error, these poses were often far from accurate.
In fact, any significant difference in error between our two
methods ought to signal a breakdown of the algebraic error
functional, as occurs here on about 10% of the point clouds.

Due to its simplicity, our method is reasonably efficient.
On the synthetic data the translation solver runs in about
200 µs; the rotation solver in 1–10 ms with a convergence
criterion of six digits of precision, which is about 10 times
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(a) Our globally optimal method. (b) DE (11% failure). (c) Hartley ’98 (100% failure).
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Figure 4. Contour plots (blue is low, white is high) with cast shadows of the function minR f(R, t) plotted over the domain of all
translations t. The 2D domain is a stereographic projection (flattening) of the unit sphere on which t lies; the function value plotted is
the algebraic error for the corresponding best rotation R as computed by three methods: (a) Our method, which computes the true global
minimum for any given t; (b) differential evolution [17], which often converges to a local minimum far above the true minimum, here
manifested as isolated tall peaks; and (c) Hartley’s linear method for fixed epipoles [5], which results in a function with vastly different
topography except in a very small neighborhood around the globally optimal translation t (at the center of each plot; see (d)).

(a) Our globally optimal method. (b) DE (8.4% failure). (c) Hartley ’98 (99% failure).
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Figure 5. Comparison on synthetic data set comprised of one hundred random points (see also Figure 4). The ridgeline evident in (a)
corresponds to the crossing of two eigenvalues λ1(t) = λ2(t) (c.f . Figure 1), and consequently marks a thin band devoid of spikes in (b)
where local and global minima are close in value. Seed points (green diamonds) and downhill trajectories in translation resulting from
alternating R and t optimization are shown in (a). The illumination has been varied among these plots so as to highlight the topography.

slower than our implementation of [5]. By comparison, one
rotation solve for the million-point data set takes 50 ms. We
note that HOPM’s rate of convergence depends on the dis-
tribution of eigenvalues—and in particular on the amount of
noise—relative to the upper bound ρ, which in turn is pro-
portional to the number of points. Hence our method works
best in low-noise settings with moderately sized data. We
anticipate that the rapidly growing interest in tensor eigen-
value methods will soon lead to more efficient solvers.

7. Conclusions
We have presented methods for computing the globally

optimal relative pose from point correspondences for either
fixed translation or orientation, which when used in tan-
dem work to improve unconstrained pose estimates. We
demonstrated improvements in pose accuracy over previ-
ous direct methods, whether translation or rotation param-
eters are constrained or not. Our methods rely on comput-
ing eigenvectors of symmetric tensors, and for orientation

optimization we proposed using an iterative higher-order
power method that has a straightforward implementation.
Future work will investigate faster eigensolvers and im-
proved seeding to increase the likelihood of simultaneously
achieving global optimality in translation and orientation.
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